Задачи на движение заряженной частицы в электрическом поле — встречаются на экзаменах довольно часто. Это, как правило, комбинированные задачи, для решения которых необходимо использовать кинематические и динамические формулы. Также решение таких задач не обходится без знания формулы силы Кулона и умения решать системы уравнений. Для того, чтобы решать задачи на движение заряженной частицы в электрическом поле, можно использовать алгоритм, с которым я предлагаю ознакомиться ниже.
Рассмотрим данный алгоритм на примере решения следующей задачи.
Положительно заряженная частица влетает в пространство между пластинами плоского воздушного конденсатора, с начальной скоростью v0, направленной параллельно пластинам. Напряженность электрического поля Е, расстояние между пластинами конденсатора d. Определить смещение заряженной частицы по вертикали.
- Для начала необходимо сделать хороший рисунок (не микроскопический). На рисунке указываем начальные характеристики (начальную скорость, ее направление, полярность пластин конденсатора, направление вектора напряженности электрического поля)
- На любое заряженное тело (частицу) со стороны электрического поля действует сила Кулона, направление этой силы определяется чисто математически (если частица имеет положительный заряд, то направление силы Кулона совпадает с направлением вектора напряженности электрического поля, если частица имеет отрицательный заряд — то направление силы и вектора напряженности электрического поля — противоположны друг другу). Определив направление силы Кулона, указываем направление вектора ускорения, сообщаемого заряженной частице силой Кулона. Направление силы Кулона и вектора ускорения всегда совпадают! Из этих уравнений определяем ускорение заряженной частицы в электрическом поле.
- изображаем траекторию движения частицы. Поскольку на заряженную частицу действует одна сила, и направление вектора скорости и вектора ускорения взаимно перпендикулярны друг другу, траектория движения представляет собой параболу (в пределах конденсатора)
- Изобразим вектор перемещения частицы в поле конденсатора. Записываем кинематические формулы для определения перемещения или скорости тела для равноускоренного движения
- Выбираем удобное направление координатных осей
- Записываем кинематические уравнения в проекциях на выбранные оси. Важно! Проекция вектора перемещения на ось ох численно равна длине пластин конденсатора, а проекция вектора перемещения на ось оy численно равна смещению заряженной частицы по вертикали.
- Решаем получившуюся систему уравнений относительно неизвестных величин.
- Если в вопросе к задаче речь идет о скорости заряженной частицы после вылета из конденсатора (направлении вектора скорости в какой-то момент времени), то на рисунке изображаем вектор скорости и определяем его компоненты. А далее определяем неизвестную величину.
Как видно из алгоритма, решение задач на движение частицы в электрическом поле конденсатора, не представляет особой сложности. Надо лишь последовательно выполнять те действия, которые описаны выше. И быть внимательными.